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ABSTRACT

This report contains the results of a preliminary study aimed
at the application of the perturbation methods of celestial mechanics
to the rigid body problem, with particular emphasis on the problem of
the motion of an artificial earth satellite about its center of mass.

Detailed considerations of various representations of the
equations of motion and their solution, necessary to a complete under-
standing of the problem, are given. The pertinent coordinate trans-.
formations are described.

The method of Hamilton-Jacobi is used to obtain the perturbed
equations of motion for a uniaxial body, and groundwork is laid toward
the development of a complete first-order theory for the case of gravity-
gradient perturbations for such a body.

Preliminary results are given for a simplified study of the
effects of damping, and a computer integration routine developed for

this work is described.
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I. INTRODUCTION

Inh NASA Contract NAS8-20175, the Contractor was responsible for a
preliminary investigation of the problem of describing the motion of a rigid
artificial earth satellite about its center of mass. The perturbation
methods of celestial mechanics were to have been employed to study the motion
of such a body under the influence of certain small perturbing torques acting
upon it.

During the period covered by the contract the following tasks were
performed:

1) ‘A literature search was made to determine the present state of
the art in this area.

2) Studies of a general nature relating to the problem area under
investigation were conducted. These studies were concerned, for the most
part, with the examination of various representations of the pertinent
equations of motion with the view in mind of trying to decide which repre-
sentations lend themselves most readily to perturbation work.

-3) The perturbations of uniaxial bodies by both gravitational torques

-and special cases of magnetic torques were examined. The method of Hamilton-

Jacobi was used in the gravitational case and the development of a first-order

theory for this problem appears imminent.

4) The qualitative nature of the effects of various perturbing torques
was compared with observed motions.

5) In anticipation of a need for computer support and verification
-of analytical results, a general integration routine was developed.

-Detailed results of these investigations follow.




II. BASIQ/&QNSIDERATIONS

A. Equations of Motion.

1. Euler Equations.

The basic vector equation of motion for a rigid body rotating about
its center of mass is
L=H, ‘ (1)
where L is the torque and H is the angular momentum, both referenced
to the center of mass. -
Equation (1) holds in any non-rotating reference frame. In a
frame rotating in inertial space with angular velocity w, equation (1)
becomes
L=H+ OH, (2)

where

z
Q w, O -wi (3)
—w. w, O
vy X
and the non-zero elements of the matrix (3) are the components of
w along the cartesian axes indicated by the subscripts. A similar
designation of components of other vectors is made in what follows.
The tensor © is equivalent to the vector operator ( w x.).
If the rotating coordinate system is fixed in the rigid body,
then
H= 1w, 4)
where I is the moment of inertia tensor. Then equation (2) becomes
L' =H +Q'I'0' . (5)

(The prime notation is used to indicate the body-fixed reference frame.)
Finally, if the body-fixed reference frame is aligned with the

principal axes, I' is diagonal.




Specifically

1' = (6)

c o b
[ -~ I =]
([oleN~]

where A, B, and C are the moments of inertia referenced to the principal

axes.
Equation (5) may be written in the scalar form

T A - [N |
L) = A} + (C Bamywz

L' = BY' + (A- 1
y Bwy (A C)mxwZ )
L) = Cb + (bPA)miw§ )

and, in this form, the three equations in (7) are known as the Euler
equations. They constitute a set of differential equations for the components
of 4'. Note that they do not give the orientation of the body. Further,
since L' in general depends on the orientation, they cannot be solved with-

out additional relations. One such nglation gives the transformation matrix.

2, Poisson Equations.

If a vector transforms from the body-fixed frame to the space-fixed
one by
p =Tp', (8)
where T is the transformation matrix,
then
T = QT. (9)
Also, since  is a tensor and transforms according to
Q= TQ'TI s (10)

then

e
[]

R' . (11)




In scalar form,

' y
le —an; + T13w}'{
= r
Tis = Togug - Typug
T,. = ' '
21 Toow, = Tyguy
T22 = _T21w + T23w;( (12)
T2z = Tppul = Tpyur
= L t
T31 = T3owy - Tyqu
. y
= - ]
32 T31mz + T33w;

Equations (12) are the Poisson equations. Combined with the Euler equations,

they comprise a set of simultaneous differential equations for T and w'.

3. Euler Angles.

Typically the Euler angles are defined as shown in figure 1.

2 Figure 1.

! a’ A




The corresponding transformation matrix between the. body-fixed and
space-fixed frames is
cosycoso-sinysingcosf, -cosysin¢~sinycos¢cost, sinysind
T =|sinycosp-cospsingcosd, —-sinysing+cosycosdcosd, —cosysind (13)
singsind , cos$sinbd s cosf .

The following relations may be shown to hold:

w = Mg, (14)
w' = Ng, (15)
M = TN, (16)
where .
1
£ +]® 17)
¢/,
0, cosy, siny sind
M =|0, siny, -cosy sin6 (18)
l, 0 , cosb N
and

sin¢ sinf, cosd, O
N ={cos¢ sinb, -sin¢g, O (19)

cosH ’ 0 ’ 1 -

The inverse relations for M and N are

-siny cot$8,

M = cosy s
siny csch,
sing cscls

I
N = cosd

~-sind cotoOs

cosy coths
S iml) ’

-cosy csch,

cos¢ csch»
-sin¢

~cosg¢ cotb»

(20)

(21)



An important relation involves the kinetic energy,fj. Specifically
T
v = 112 wTIm = 1/2 w'' I'w' . (22)
Using relation (15), one may write

J

17, e'xe , (23)

where

X

]
2
]
2

(24)
Explicitly, X and its inverse are:
(AsinZ¢+Bcos?¢)sin20 + Ccos?6 , (A-B)siné cos¢ sind , Ccosd
X = (A-B)sin¢ cos¢ sind , (Acos2¢+Bsin?¢) , O (25)

Ccosf , 0 . c

{sin2¢ +_cosz¢] 1 t;._ l] singcos¢ _(sin2¢ + cos2¢) cotf
%o, ,

A B sin A B sin® A B sin6

xI = L - lisindcos ) cos?¢ + sinZ¢ i _ 1t
A BJ sin® -, A "B ) ,IB a sin¢ cos$ cotb 1 (26)

2.2 2 2 . 2
_|8in‘d cos“¢} cotb ;__‘l sin“¢ _..cosZ¢ 2 1
( A + B ] sind , [B A sin¢cosdcotd | A + B cot40+ C

Of particular jmportance are the equations obtained by reverting (15).

In scalar form,

& = sind csch w; + cos¢ cscb w;
§ = cosd m; - sin¢ w; (27)
$ = -sing coth w; - cos$ cotf w' + w' .

y Z

These equations express the derivatives of the Euler angles in terms of
the Euler angles and components of w'. Together with the Euler equations,

they comprise a set of differential equations in w' and the Euler angles.

B. Standardized Symbols..

In the problem of the motion of a satellite there are four coordinate

systems which are of particular interest, and six sets of .Euler angles



relating them. A standard notation has been adopted here for these

parameters. They are as follows:

1. Cartesian Coordinate Systems.

( x*,y*,z* ) The reference inertial coordinate system. Unless specified
otherwise, this is an equatorial system with the z*-axis directed along
the earth's spin vector and the x*-axis toward the vernal equinox.

( XpsY9%0 ) A coordinate system associated with the satellite orbit

plane, with the z_-axis directed along the normal to the orbit in the

o
sense of the orbital angular momentum associated with the satellite,
and the xo—axis toward the ascending node.

( x,y,z ) A coordinate system associated with the angular momentum
vector of the satellite as it rotates about its center of mass. The
Zz-axis is directed along the positive angular momentum vector. The
position of the x-axis will be left undefined at this time.

( x',y',2' ) The body-fixed axis system, oriented along thé ﬁrincipal
axes of the body. The choice of the six possible orientations will not

be completely specified, but in general it will be made so that the

angular momentum vector lies ''close'" to the positive z'-axis.

2. Euler Angles.

(Q,1,-) rotates  (x*%,y*,z%)  into (xo,yo,zo)
(y*,6%,¢*) rotates (x*,y*,z*) into ( x,y,z )

(ps6s¢) rotates  (x*,y*,z*) into (x',y',z') (28)
(wL,eL,¢ ) rotates (xo,yo,zo) into  ( x,y,z )

(pys8406,) rotates (x,,3,,2,) imto  (x',y',2")

(‘P'selsd)') rotates ( x, v, z) into (X',y',z')




C. Torque-Free Motion.

The classical solutions for the torque-free motion are obtained
from the Euler equations, (7), and equatioms (27) for ithe kiler angles.

If L = 0, equations (7) become

]
o

A&; + (p‘B)w;w;

.1 - (N}
BS) + A-Cugwy

I
o

(29)

Co! + (B-A)wlw'
z X'y
Since these do not contain the Euler angles, equations (29) may be solved

independently of (27).

1. Unjaxial Bodies.

A uniaxial body is one that has two of its principal moments of

inertia equal. If A = B in (29), we get

v - LI B
wa + (C A)wywz 0
Aw' + (AClw'w' = 0 (30)
y X 2Z
Co’ =0 -

Z

The solutions have the form

w' = p cos(nt+d)
X
0! = p sin(nt+§)
y 31
| . 1
W= Wy
where n = {C-A] w "
A zo -
and p, wzé, and § are determined by the initial conditionms.

The Euler angles are obtained by combining equations (31) with
the differential equations (27). The general solution, however, is
complicated. To simplify the problem, a particular orientation of the

space-fixed coordinate system is assumed; the z-axis is assumed to lie



along the angular momentum vector. This implies a priori knowledge
that the vector H is, itself, space-fixed.

We require

0
H=10 (32)
hi.
Then the relation
H =I'w'=T H (33)
gives the following conditions
tand' = w'/w'
xy (34)

cosb' = Cqé/h
(In keeping with the convention of Section II.B.2, primes are used to
indicate the angles are referred to the angular momentum coordinate system.)
We also have, from (27),
@' = sin¢' csco’ w; + cos¢' csch’ m;. (35)

Solution of (34) and (35) gives

pt o= wo + ht/A
g' = 68 (36)
9' = ¢;—nt = (n/2~-8)-nt .

The z'-axis or axis of symmetry is thus seen to describe a cone of
half-angle e; about the angular momentum vector, at a rate y' = h/A.

This motion is commonly called Eulerian motion.

2, Triaxial Bodies .

If the three moments of inertia are unequal, efuations (29) must
be solved. They have solutions in terms of the Jacobian elliptic functions.
Using (29), and the energy and momentum relations
=1 2 2 12y =
‘:7 = /2 (Aw; +Bw; +sz ) = constant, (37)

H'2 = A%w'2 + B2,'2 + Czw;2 = h? = constant, (38)
X
y



we obtain

12 2 2 12
a - b, “w
1 1 ’
XZ 2 2 y2 (39)
1 - L
z ag b3 wy s

where

» _ h2-2c¢%]
ays =" o
A‘(A"C) s
2 _ 2A% -n?
a2 = AT -0
3 c(a-0)

& H

, B(B=C) (40)
1~ A@-C) ,
B(A-B

and bs® = ca-c) .

If (39) is solved for w;w; and the results are substituted into

(29) one obtains

Bu' = (C-A) V(a,2-b;%w’2)(a,2-bs%'2) . (41)
y 1 y y
The integral of (41) is an elliptic integral which may be expressed in

terms of the Jacobian elliptic functions.

If
w2 < 287, (42)
then
w' = (al/bl)sn(pt+c). (43)
y 3
where
- [e=a
P = [ 3 ) b;a, (44)

and k, the modulus of the elliptic function, is given by

k = bja /azb,. (45)
The remaining components of w' are obtained in a similar way and,
hence, we obtain the complete solution

w! = a; cn(pt+c)

M-

= (a;/b;)sn(pt+c) (46)

N =< =

a, dn(pt+c).
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The above solution is valid only when condition (42) is satisfied.
However, we may note that interchange of the x'- and z'-axes reverses
the inequality in (42). Thus condition (42) may be assured (except when
h2 = 289] ) by properly designating the principal axes. Note,. however,
that this designation depends on the initial conditions. The case

h? = 2B% is covered by the limiting case k?»>1, fof which

w}'{ = a, sech(pttc)
w; = (allbl)tanh(pt-i-c) (47)
m; = a, sech(ptt+c).

The Euler angles as functions of time are found, in the same way

as before, from equations (34) and (35). Equations (34) give

cotp' = -A% tn{ptic)
1 (48)
Ca3
cosg' = - dn(pttc)
Equation (35) gives
t
7] —Cwé2
- |l
A wo + h J m;z‘ dt
o )
f 2 (ptte)] \
h 1 + o sn“(ptt+c
v = ' — dt 49
or v Yot J [1 + B sn”(ptt+c)| (49)
where
_A-B
¢ = B-C
(50)
and
B = Ca/A.

Equation (49) may be solved in terms of an elliptic integral of the

third kind:

du

= T + 1 snu
T(a,k,u) J 1 4+ n sn“u.
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However, the formulation so obtained does not readily reduce to the

uniaxial case when A = B. Instead, we introduce the function

2
Pl = | (R oL

The expression for y' then takes the form

" ¢é + ht/A + a [%(B,k,nt+c) - F(B,k,ci] (52)

Since a = 0 when A = B, this immediately gives the uniaxial case.

IT1. DAMPED UNIAXTIAL BODIES

As shown previously, a free uniaxial body executes Eulerian motion,
with the axis of symmetry maintaining a constant angle, 0, with the
angular momentum vector. The observations of the Pegasus satellites,
however, indicate that 6 increases with time for those bodies, eventually
reaching 909, Such a motion indicates a loss in energy, so that some
damping torque appears to be acting on the satellite. A preliminary
study was performed to determine the effects of certain types of damping.

The Euler equations for a uniaxial body are

Aw; + (C-A)w;w; = Ly
A&; + (A—C)w;wé = L; (53)
ik B |
sz"ch

To consider the simplest form of damping, let
L' = - ka' , (54)
where k is a real constant.

The last of equations (53) becomes

C&; = - k! ,
which gives
w'= ' e- ;/Tl (55)
z zo
where T, = c/k . (56)
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For the other two components, we require the

D

quations to have the same

form as in the torque-free case

we =p cos(nt+3§)
1] = :
wy p sin(nt+s) [from (31)]

where now p and n are allowed to vary with time. Solving for these two

variables one obtains

- t/t
c=pe 2 (57)
o
where
T, = A/k (58)
and
nt = Bl l-e (59)
where
= = g_i '
B T Tl[ 3 ]wzo. (60)

The angle Yy between the symmetry axis and the angular momentum

tany = l_;? + H;Z _ Ap (61)

L 1 4
Hz sz .

vector is given by

Substituting for w; from (55), we obtain

At
tany = Ge , (62)
where
G = tany_ = Ap /Cuyy (63)
and
A~C
4 k[Ac ] : (64)

Note that A depends in sign on the relative magnitudes of A and
C. If A>C, A >0 and vy increases with time. If A < C, X is negative
and y approaches zero.

It should be noted that Yy is not the angle between the symmetry

axis and any space-fixed axis. Since a torque is present, H is not a
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fixed vector. However, if k is small, H varies very little from its
original direction. In this case y is essentially the Euler coning angle
8.

In general, the damping constant k must be regarded as a tensor,
rather than a simple scalar constant. The form of the tensor will
depend on the distribution of the physical properties (mass, conductivity,
etc.) of the body. It is reasonable to suppose that the transformation
to principal axes, which diagonalizes the inertia temsor, will also

diagonalize the damping tensor. Hence we may suppose that

1

k 0 O
K'=10 k2 0 (65)
0 0 Kk;f.

If the body is a body of rotation then kl =k The motion for this

2o

case is immediately given by letting

T, = A/kl (66)
and
A= AC .

If k1 # k,, the solutions are different, and contain periodic terms.
The essential features, however, are unchanged.

The variation of y with time given by the above theory has been
found to agree well, qualitatively, with the observed motions of the
Pegasus satellites. However, the damping constant required to fit the
data is considerably higher than would be expected if damping were only
magnetic in nature. It appears that other types of damping, perhaps
aerodynamic in nature, are acting. Furthermore, they appear to have
different magnitudes for the different Pegasus satellites.

It is no doubt a gross over-simplification to assume that the

damping constant is independent of time. In further work attempts should
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be made to consider the variations of the damping torques with attitude,

altitude, etc.

IV.. HAMILTONIAN MECHANICS

The great bulk of effort in this contract has been devoted td the
application of the methods of Hamiltonian Mechanics to the rigid bod;
problem. This is because these methods are well suited to perturbatiomn
problems, whereas other methods, such as used in section III, appear to
be more difficult to apply except in special cases. While some work has
included consideration of triaxial bodies, most of the attention has been
given to the case of uniaxial bodies. Since, for bodies which have two
nearly equal principal moments of inertia, such as the Pegasus satellites,
motion is very nearly Eulerian, this concentration on uniaxial bodies is

felt to be justified.

A, Equations of Motion.

Let q,.= ¥, q, = 9, q; = ¢, so that

]
Q=| ¢ (67)
¢ .
The momenta canonicdal te the:q are-gitven:by -
8L
= (68)
Py T g .
where £ 1is the Lagrangian function. If the potential is independent
of the hi 's,
I
P. 7 %q , (69)
i

where

t] = l/2 ETXE = 1/2 Q XQ i;from (23)i}




Performing the differentiation, we obtain

pl
P = l-fg = XE (70)
p¢ L]
Relations can also be derived between P and H. We find
P =N H =M H. (71)
In terms of P, the kinetic energy is
T I
Ta ) = 1/, X P, (72)
i i
The Hamiltonian function is
T I
=1/ p X P+ . 73
N (o p) = 1, Ve 73)
The Hamiltonian equations of motion are
@ = 3°H'(qi,p )
—_1 i
k 3p
k (74)
- Gl (a,,p,)
) .
k qk
The first of these equations repeats equations (69). The second becomes
1
5k=_1/2PTg_X_P_g__‘Y (75)
_ % i -
The derivativesof‘XI»have been .evaluated. ' They-.are:
I ' A
-&_ = 0
oY
I - 2
39X sin2¢ cosZé 3 2cos8 0 (1+cos<8)
20 = Y + B |cs¢c ] 0 0 0
(1+cos20) 0 - 2cos®
11 0 - cos6 O
+ {K - 33.)sim1> cos¢ csd?0 |- coso 0 1
0 1 0
(76)
I 1 0 - cosb
%i— = 2(%-- l-]sin¢ cos¢ csc?h 0 ~ sin?e 0
¢ B - cosf 0 cos?6
1 1 ) ) 0 1 0
+ {3 ~ | (cos“¢ - sin“¢)cscé 1 0 - cos®
0 - cosf 0




The following equations of motion are obtained.

For the torque-free motion of a uniaxial body, equatiomns (70),

(71), and (77) become

B.

new variables which

S 4
= a‘p

_ (sinzd) coszg
0

1

1 N 4
+ [X - i] in¢ cos¢ csc?e pe(pwcose-t%) -39

N ¢
f>¢ = l-‘l{ - ;BL.] {.sinda cos¢ [pez - csc?e (pw-p¢cose)zj

- (cos?¢-sin¢)cschd pe(pw-%cose)} - % .

2
: P
% = ;—-A-[cscze (pq)-pq)cosf))2 + pef] + -f%_

=1 2 -
P T csc e(pw pq)cose)
§ = pe/A
$ = - .11{ csch cotd (pw—p¢cose) + P¢/C
p, =0
I',e =i‘- cscde [(pw2+p¢2)cose - (1+00529)Pwp¢]
Py = 0 .

Hamilton-Jacobi Method.

A + B )csc36 [(p¢2+p¢2)cose - (lﬂoszeypwp(b]

-17-

~

77)

_/

(78)

79

In the method of Hamilton-Jacobi, we seek a transformation to

are, in the torque-free case, canonical constants

of the motion. The perturbed motion is then to be determined by studying

the perturbing Hamiltonian function.

The variables (qi,pi) are to be transformed to new variables

(aI,Bi). The new variables will be canonical if (qi,pi) are canonical
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and

2

o5 ¢ ..u:
b = ‘\q],,g?

o
3 qy
(80)
3S(Qi,0.i)
= - =
] 3
where S(qi,ai) is an arbitrary generating function. The Hamilton-
Jacobi equation is
A4 +85/5t = 0. (81)
if 34 is independent, explicitly, of the time it is a constant of the
motion. Let it be a,. Equation (78) becomes, using (80),
1 d 3|2 2] 1 (as)
= 2| csc2p|2S _ aSte 18171 -{_
Assuming
S = - ot +5 (1) +5,(0) + 5,(0) (83)
we get
= 2a¢a'. . 1y2 12 4 A qr2
2A0, csc G(Sw cosf S¢) + Se + C $¢ , (84)
where the primes denote differentiation. Solving for S& s
A \
S& = cosf S; + sind Y2Aa; - Séz -c S&z .
Since the right-hand side of this equation is independent of ¥, it
must be a constant. Thus
S' =aq
3
v (85)
Sw = u3\p .
Similarly, we obtain
5, = 929 » - (86)
and
Séz = 2Aa1 - cscze(aa—azcose)2 —‘%ragu,
or
Sy = +F@) , (87)
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where

F(8) = 2A0, - cscze(a3-a2cose)2 - %-azz . (88)

In equation (87), either sign may be adopted. It turns out that, to
agree with conventional notation, the negative one should be used.

From (87), then,

Sg = - [ /F(®)' a6 . (89)
Let
I, =~ -5, = [/F@ a8 (90)
This may be written
I = | cscé VatbsinZe+c cosé de, (91)
where
a=- (a§+a§)
b = ZAal + E%é)a% (92)
c = 2a2a3 .

To perform the integration, it

cosd = a - B cosy , (93)

where o and B are to be chosen to simplify the resulting integral.

We find
I, =- 8 /rté + b(l—az) + cal + (2aBb-cB)cosy - szcoszY' sinydy
1 1 - (a-B cosy)® (94)
1f
20b - c =0, (95)
the second term vanishes.
If, further,
[a + b(l-a2) + ca) = b2, (96)

then the term under the radical sign becomes
sz(l-coszy) = bR2sin?y .

Then (94) becomes

1y sin?y dy
I, =-b'"8 J 1 - (a-Bcosy)?. 97)
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From (92), we note that b = h?, where h is the angular momentum.

Conditions (95) and (96) require

Let

Then

Equation (93) becomes

cosf

iy 2
o = uzug/h

8=7/1-0a,2/2 /1-a,2/n?.

T
cosf' = azlh

(98)
cosf* = a,/h
o = cos8' cosf*
(99)
g = sinB' sind* .
= cosf' cosf* - sinf' sin6* cosy |, (100)

which has the form of the law of cosines for spherical triangles.

The integral in (97) may be evaluated by making the transformation

z = tan X
2, (101)
and expanding in partial fractions. We find
_ _ 8hp2 z%dz
L d (1+22) (1+eZz2) (1+£2272)
or 2 2_g2 4 Y (102)
8hB e¢-f - e 1 f
I = - 31D ‘:(1-e2)(1—f2)I? 1-e9 3 V@ Iu:]
where 2 - 1+a+B
1+a-8
f2 1-a-8
1-o0+8
d = (1-o+8) (1+a-B) (103)

L]
I

_ z2dz
2 1+z2

1. = ZZdZ‘
3 1+ezz2
_ z2dz
Iu 1+fzz2



Let
tanA = ez
tanuy = fz .,
Then the integrals (103) become
I2 =z - y/2
13 = z/e?2 - A/e3
I,-= z/£2 - u/f3,

After substituting (105) into (102) and simplifying, we obtain
I; =h [:e(1+a-8)x + £(1-o+8)u - Y:] .
From (99), we can show
14048 =2 cosz‘l/2 (6'-0%)
1l+a-8 = 2 cos? 1/2 (0'+0%)
1-a+8 = 2 sin? 1/, (8'+6%)
l-0-8 =2 sin? 1/, (8'-6%) .

Then

2 _cos? /2 (8'-0%)
cos® 1/, (8'+0%)

sin? 1/, (8'-8%)
sin? 1/, (8'+0%) ,

£2 =

Equation (106) becomes
I, = h&ose' (A~-u) '+ cosb* (A+u) - Y] .

Now, consider the spherical triangle in figure 2:

Figure 2,
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(104)

(105)

(106)

(107)

(108)

(109)
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One may write the following identities from spherical trigonometry:

tan 1/, (vtn) = £28 2 (01=0%).0n X

cos ~/2 (8'+6%) 2

sin 1/2 (8'-6%)

tan 1/2 (v-n) =

Comparison of these relations with (104) gives
v+ n=2x
v-n=2,

or
ve= A+

n=A-uo

Equation (109) then gives

h
sin 1/2 (8'+0%)ran 3

I, = h‘:n cosB' + v cosb* - %].

But

h cos8' = ay ,

h cosf*

(13,

sO

I1 =a,n + azv - hy .

The generating function, from (85), {8p), and (87) 1is

S = - at+ a3w + a2¢ - 11(6) .
From equations (80),

P =0 ’\
v 3

811
p=-—
0 30

a1,
B, =t+_1L

aal

LS
By == ¢ 3;;
RS

By == v+ L

3a3

tan =

_

ez
(110)
fz .
(111)
(112)
(113)
(114)

l?, (115)

To obtain the derivatives of I;, use is made of relations (98) and



(100), the expression for h,
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[~ ,
h? = 240, + lzaé]ag s ‘Erom 092i]

and the spherical trigonometry identities
cosf' = cosf* cos® + sinb* sind cosv
cosf* = cosB' cosf + sind' sind cosn

siny _ sinv _ sinn
5ind =~ sinf' sin6* .,

After differentiating and much simplification we find
L,
96

h sin6* sinv

E

- Ay/h

(=34
-
-
]
3
[}
p——
(@]
]
>
S’
=<
0
[e]
/)]
D

1 =y,
aa3 _J

The equations of transformation then become

p =a
" 3
Pg = - h sin8* sinv
P¢ =0,
= — - l1C-A '
82 ¢ +n [—C— ycosH
By = - v+ v,

Up to now we have been using angles 6' and 6*, although no

consider figure 3:

attempt has been made to identify them with the Euler angles defined

in Section II.B.2. It is now asserted that these are the same angles.

vector, and 8' that between H and the symmetry axis. Furthermore,

(116)

(117)

(118)

6% is found to be the angle between the z*-axis and the angular momentum
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Figure 3.

This figure shows the relation between the Euler angle sets (¢,60,4),
(V*,0%,4*), and (y',0',¢'). Comparison of this figure with that of

figure 2 suggests the equivalences

v =y - P
n=¢—¢' (119)
Y = ¢* + '

Equations (98) and (100) are also consistent with this identification.




Equations (118) then become

Pw = o3
pe = - h sin® sin(y-y*)
Py = %

™
—
]
cr

- (A/n) (p*+p*)
By == ¢' - (C A)(¢*+w')cose'

Ba=-w*

Equations (121) may be written

0%+ =B (e-p))
U.
' == By - = ( 'A (t-8,)

B3=_"p*

AN

Now consider the solution obtained previously for thig motion as

P o= w; + ht/A :i
el=e'

(e
¢$' = ¢'-nt

(o]

)it

By comparing (122) with (36), we may identify the B '

given by

Note that

Let ﬁD = the time at which

=¢*+yY' =0.
Then
g, =T
B, == ¢ (-¢' at t=T)

™w
w
]
1
<
*

(120)

(121)

(122)

(36)

(123)
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The complete set of equations for the angles is

yp* = w:
0% = p* = cos"l(as/h)
)
=h .
Y =3 D (124)
8' = 6; = cos_l(az/h)

o' = 4! - n(e-T)
Since ¢* and y' enter only through y = ¢* + §', it is not necessary to
consider both angles. One may be set at any convenient value.

One of the properties of the Hamilton-Jacobi method is that the
equations of motion in the perturbed case are of a relatively simple
form. Suppose the Hamiltonian function may be split into two parts:

N =%, +H ©;,8) (125)
where %+})is the Hamiltonian for the unperturbed problem. The
unperturbed problem has a solution given by algebraic transformations
to the canonical constants ai,Bi. The motion for the perturbed
problem is given by considering the ai,Bi to be variables, with the

equations of motion

. N (ey,8))
o = iv7i7

: P)
1 By (126)
i da, .

1

Note, however, that the task of expressing ﬁ+.in terms of the canonical

constants may not be an easy one.

C. Poisson Brackets.

Consider any set {yi} of variables. These variables may. be

written as functions of the canonical constants.

yi = Yi(“1’°‘2""’O‘N’Bl’sz"'"BN’t)’ (127)
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where N is the number of degrees of freedom. (Noie that the number of

variables y  is not restricted to be equal to N.) Differentiating (127),
i

one obtains

g 9y4 dy 3

o ] i Y yi
= o, + —= +
71 1[3“- 3 Bj] T (128)

But, from (126),

L. PR
h| dﬁj ’ "j 30.j ’
5 N |9 3 ]
§ = yi aqil_ yi gﬁ*n + yi (129)

i 35130, 38, 'aej 3a 3t .

h|
Now, the perturbing potential ﬂﬁ may be expressed as a function of
the vy 's, i.e. s

%' =%|(yl’y2""’yM’t) . (130)

Differéntiating (130), we obtain

)]
39*" ¥ é_?!] yk _\
aaj T k=1 Byk Baj
>’ (131)
aq+l M i‘)jﬁ ayk
3B, = dy. o8
= k R
j k=1 h| J
Substituting into (129) we find
;. ayi+’z4 {y y“gg’)_g_-. (132)
PR ’

(133)

N |9 3 9 3
gy y‘i= ) " 7y Yk
i’k -1 19 3 9B, Bo.
3=1 (%o 2By 0By Pey)

where E.yi,ykz , the Poisson bracket, is defined as
In equation (132), note that ifq¢|= 0, corresponding to the unperturbed
case, then

oy
Vi Tec .
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Thus ayi/at is just the unperturbed rate of change of y,, call it (§i) .
i o

Also, noting that the sum in (132) is of the form of a matrix product,

we define matrices Y, B, and'H' by

y
Y3 =9y
Bij = iyi’y:;g (134)
q+ =.éﬁil
. s .
Y3 yJ
Then we have
= +3%. (135)
o y

Equation (135) gives, explicitly, the perturbed rate of change of the
variables.

At this point, we have two possible approaches which may be taken.
The equations of motion as expressed in equations (126) may be used
by expressing q*.in terms of the canonical constantatqi,Bi, and
differentiating to obtain terms of the form BQﬂ/aai. After integrating
to obtain the time variations in ai’Bi’ the corresponding variations in
the angular variables may be obtained through the transformation equations
(120) and (121).

Alternatively, we may elect to use the equations of motion in
the form of equations (135), by expressing q*'in terms of the variables
of the array Y and differentiating with respects to these variables. Note
that equations (135) bear a close analogy to the Lagrange planetary
equations of Celestial Mechanics.

The latter course is felt at this time to be the more promising one,

and future work should be directed along this line.

V. GRAVITY-GRADIENT TORQUE

The gravitational potential energy of a rigid body in the

vicinity of a central point mass is, to a good approximation,
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T
4 - -——ﬁm + &L {Sp Ip - tI], (136)
o
where

G = universal gravitational constant

M = mass of central body

m = mass of rigid body
R_ = distance between the centers of mass of M and m

p = unit vector directed from the c.m. of m to that of M

t = trace of I

In (136), the first term is the potential energy of two point masses.
Suppose that the coordinate system to which I and p are referenced

is the body-fixed principal-axis system. Then

I+>1'=

ook
OwWwo
Qoo

and tI = A+ B+ C. If this system is used, then, of the terms in
(136), only. the term containing p' will depend on the orientation. Thus

we may let the perturbing potential be

T
Q4] =Kp'I'

iy (137)
or %' = K(A1%+Bm24Cn?)
where
3GM
K= 2R°3 (138)
where 1, m, n are the components of p'.
Now p' transforms according to
p=Tp',
. I N .
or po =T p . (139)
Then (137) becomes
: T I
H =x11'To . (140)

“If the components.of p.are (A,u,v),.we obtain, imc.sdalar.foxm,
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=

K {(a cos?y + d sin?P)A2 + (a sin?y + b coszlp)u2

+ ev2 + 2c(A cosy + u simp)E\) sind - (A siny -y cosw)cosej .
(141)

2f (A siny - u.cosP)v sind cosb }
where
a = (Acos2¢+Bsin?¢)
b = (Asin2¢+Bcosz¢)
¢ = (A-B)sin¢ cos¢
d = b cos?s + Csin?e
e = b sin?8 + Ccos?®
f=1bv-0C,
In the uniaxial case, A = B, and 1# simplifies considerably. Thus
%' =K 3 [Acoszw + (Ac0829+Csin29)sin2w] A2
+ [Asinzw + (Acoszeﬂsinze)coszw] u?
(143)
+ (Asin26+Ccos?0)v? (A=B)
- 2(A-C) (Asiny - u cosyp)vsing cosé}.
Now let us return to equation (138). We have

M,

K(A12+Bm2+Cn?) ,

L]

which, for A = B, becomes

*,
Let § be the angle between p' and the z'-axis. Then

p',ﬁv =n
145
1 -0 =12 + m? ., ( ‘

K [A(12+m2) + Cn?-] . | (144)

cosé

sin?$
Equation (1l44) becomes
‘H’. = K[Asinzé + Ccos26].
This may be written in two equivalent forms:

K | (A-C)sin26§ + C ’ (146)
LIEESN |

or

!

K [ (C-A)cos2s + Al . (147)



VI. NUMERICAL INTEGRATION ROUTINE

It has been anticipated that, at some time during the performance
of this work, a need would arise for the computer integratiom of.
differential equations such as those of equatiomns (126) or (135). To
this end, a computer subroutine has been written which will numerically

integrate simultaneous differential equatioms.

A, Description of the Routine.

The subroutine, called QUAD1, effects the solution of a system

of first order differential equations of the form
y; = f(x,yl,yz,...,yN') , i=1, 2,...,N (148)

where N may be any number from 1 to 12, or larger, with slight -
modifications.

The integration method used is a modified Runge-Kutta method
known as Merson's method. The chief advantage to this method is that
it pfovides a very good estimate of the fifth-order truncation error.
From the limited tests conducted, it also appears to be about five

times as accurate as Runge-Kutta using Runge's coefficients. The

equations for Merson's method for one dependent variable are:

"
]

1 hf (x,y)

o
]

, = hi(x + h/3,y + k1/3)

k3 = hf(x + h/3,y + k1/6 + k2/6)

k, = hf(x + /2,y + k1/8 + 3k,/8) (149)
kg = hf(x + h,y + k) /2 - 3k;/2 + 2k)

Yo =Y + 1/6 (k +4k,+ks)

€= 1/30 (2k,-9ky+8k k) .

QUAD]1 is a control routine. Once it is called it remains in
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- control until integration is completed, calling subroutines to evaluate

the functions}fi, to integrate, to adjust the integration interval and

to print at specified intervals. The incrementing of the independent

and dependent variables is performed in;dousle precision. Integration
proceeds until the independent variable exceeds a specified value. A
detailed description and listing of the program is available to interested

persons.




